terjawab• terverifikasi oleh ahli Tentukan simpangan kuartil dari data: 16 15 15 19 20 22 16 17 25 29 32 29 32 Iklan Jawaban terverifikasi ahli Abiiahh qd = simpangan kuartil bukannya simpangan quartil itu Q3-Q1 ?kalo dibagi 2 namanya interquartil ?maaf kalo salah Simpangankuartil dari data 11 9 15 12 8 dan 16 adalah pilih salah satu a 2 b 3 c 4 d 5 e 6 Lamhunghn 1 minute ago 5 Comments Top 1: simpangan kuartil dari data: 3,4,6,7,5,6,8,9,10,8,9,11 Berikutini adalah contoh dari simpangan kuartil. perhatikan diagram berikut!modus dari data pada histogram . Pembagian data kelompok menjadi empat sama banyak ini dipisahkan oleh tiga nilai kuartil, yaitu kuartil atas (q 1), kuartil tengah (q 2), dan kuartil bawah (q 3). Simpangan kuartil dari data Simpangankuartil dari data 16,15,15,19,20,22,16,17,25,29,32,2932 adalah - 10570446. Fakultas Pertanian Universitas Panca Bhakti menerima mahasiswa baru pada tahun 2021 sebanyak 528 orang dan 211 orang diantaranya telah membawa netbook Tentukanrentang interkuartil dan simpangan kuartil pada data di bawah ini: 19, 12, 14, 35, 7, 15, 10, 20, 25, 17, 23. Perbesar. Foto: buku Cerdas Belajar Matematika untuk Kelas XI. Kuartil bawah Q1 = 12 dan kuartil atas Q3 = 23. Rentang interkuartil (RAK) = Q3 - Q1 = 23-12 = 11. Simpangan kuartil = ½ RAK = ½ 11 = 5,5. SAXX. Contoh soal simpangan kuartil dan pembahasannyaArtikel ini membahas contoh soal jangkauan, jangkauan antar kuartil dan simpangan kuartil yang disertai pembahasannya. Jangkauan diartikan sebagai selisih antara data terbesar dengan data jangkauan sebagai berikut → Jangkauan = XBesar – XKecil Rumus jangkauan antar kuartil → Jangkauan antar kuartil = Q3 – Q1 Rumus simpangan kuartil → Simpangan kuartil = 12 Q3 – Q1KeteranganXbesar = data terbesarXkecil = data terkecilQ1 = kuartil pertama atau kuartil bawahQ3 = kuartil ketiga atau kuartil atasUntuk lebih jelasnya, perhatikan contoh soal jangkauan, jangkauan antar kuartil dan simpangan kuartil dibawah soal 1Jangkauan dari data 1, 3, 4, 12, 14, 13, 14, 2, 1, 4, 5, adalah…Pembahasan / penyelesaian soalBerdasarkan data diatas diketahui data terbesar = 14 dan data terkecil = 1 maka jangkauan XBesar – XKecil = 14 – 1 = 13. Jawaban soal ini adalah soal 2Jangkauan antar kuartil dari 16, 16, 18, 15, 19, 16, 17, 15, 15 adalah…A. 15,5C. 17,5D. 18E. 18,5Pembahasan / penyelesaian soalUntuk menjawab soal ini kita tentukan terlebih dahulu kuartil pertama dan kuartil ketiga data diatas. Urutan data dari kecil ke besar sebagai berikutMenentukan kuartilBerdasarkan gambar diatas kita peroleh→ Q1 = 15 + 152 = 15 → Q3 = 17 + 182 = 17,5Jadi jangkauan antar kuartil data diatas Q3 – Q1 = 17,5 – 15 = 2,5. Soal ini jawabannya soal 3Simpangan kuartil dari 13, 14, 15, 17, 11, 11, 18, 19 adalah…A. 2,75B. 7,5C. 11D. 13E. 17Pembahasan / penyelesaian soalSama seperti nomor 2 tentukan terlebih dahulu kuartil bawah dan kuartil atas data dengan gambar dibawah inimenentukan kuartilMaka kita peroleh→ Q1 = 11 + 132 = 12 → Q3 = 17 + 182 = 17,5Simpangan kuartil data nomor 3 sebagai berikutSimpangan kuartil = 1/2 Q3 – Q1Simpangan kuartil = 1/2 17,5 – 12 = 1/2 5,5 = 2, soal ini adalah soal 4Data berat badan siswa kelas 12 SMA dalam kg sebagai berikut 47, 53, 62, 54, 48, 55, 59, 60, 48, 50, 58, 62, 63, 66, 68, 90, 63, 58, 59. Jangkauan dan simpangan kuartil data tersebut adalah…Pembahasan / penyelesaian soalPada soal diatas diketahui data terbesar adalah 90 dan data terkecil 47 maka jangkauan = 90 – 47 = kita menentukan kuartil pertama dan kuartil ketiga sebagai berikutMeenentukan kuartil nomor 4Jadi peroleh Q1 = 53 dan Q3 = 63 maka simpangan kuartilSimpangan kuartil = 1/2 Q3 – Q1Simpangan kuartil = 1/2 63 – 53 = 1/2 10 = 5Jadi soal ini jawabannya soal 5Tabel dibawah ini adalah tinggi badan siswa SMA kelas cmFrekuensi160 – 16215163 – 16512166 – 16813169 – 17120172 – 17410Contoh soal simpangan kuartilSimpangan kuartil data diatas adalah…A. 4,125B. 10,25C. 162,5D. 65,25E. 170,5Pembahasan / penyelesaian soalCara menentukan simpangan kuartil tabel sebaran frekuensi sebagai berikutMenentukan kuartil pertama → Jumlah frekuensi N = 15 + 12 + 13 + 20 + 10 = 60 → 1/4 N = 1/4 x 60 = 15 Berdasarkan hasil ini kita peroleh kuartil pertama ada di kelas pertama → TB = 160 – 0,5 = 159,5 → fQ1 = 15 → ∑ fQ1 = 0 → c = 162,5 – 159,5 = 3 → Q1 = TB + 1/4 N – ∑ fQ1fQ1 c → Q1 = 159,5 + 15 – 015 3 = 159,5 + 3 = 162,5Menentukan kuartil ketiga → Jumlah frekuensi N = 15 + 12 + 13 + 20 + 10 = 60 → 3/4 N = 3/4 x 60 = 45 Berdasarkan hasil ini kita peroleh kuartil ketiga ada di kelas ke empat → TB = 169 – 0,5 = 168,5 → fQ3 = 20 → ∑ fQ3 = 13 + 12 + 15 = 30 → c = 168,5 – 171,5 = 3 → Q3 = TB + 1/4 N – ∑ fQ3fQ3 c → Q3 = 168,5 + 45 – 3020 3 = 168,5 + 2,25 = 170,75Jadi kita perolehSimpangan kuartil = 1/2 Q3 – Q1Simpangan kuartil = 1/2 170,75 – 162,5 = 4,125Jadi soal ini jawabannya A. Kelas 12 SMAStatistika WajibKuartilKuartilStatistika WajibSTATISTIKAMatematikaRekomendasi video solusi lainnya0220Manajer restoran cepat saji mengamati dan menghitung wakt...0335Nilai kuartil atas dari data pada tabel berikut adalah .....0343Perhatikan data berikut. Berat Badan Frekuensi 50-54 4 55...0340Tabel berikut menunjukkan distribusi frekuensi jarak tola...Teks videoKalau fans simpangan kuartil dari data 13 12 14, 11, 13, 15, 14, 12, 16, 13, 14, 15 dan 13 adalah titik-titik untuk menjawab soal ini kita akan menggunakan konsep dari kuartil pada data tunggal di mana untuk data genap dan tidak habis dibagi 4 maka kuartil 1 akan sama dengan data ke seperempat x n + 25 N adalah jumlah sampel nya kemudian kuartil 3 atau q3 ini sama dengan data ke seperempat x 3X + 2. Kemudian untuk menjawab soal ini juga kita perlu ketahui bahwa simpangan kuartil atau Q D ini = setengah X kuartil 3 dikurang kuartil 1 kemudian kita perlu untuk mengurutkan data data pada soal ini dari yang terkecil ke yang terbesar di sini menjadi 11 11 12 12 13 1313 13 14 14 14 15 15 kemudian 16 mana kalau kita hitung disini kita dapat nilai UN = 14 n di sini adalah nilainya genap dan tidak habis dibagi 4 maka kita akan menggunakan rumus kuartil pada yang telah kita tulis tadi di atas berarti di sini kuartil 1 = e = data ke server 4 * n + 2 / 14 + 2 = 16 x 14 = 4, maka di sini sama dengan data ke-45 data-data keempat nilainya sama dengan 12 atau kuartil 3 ini sama dengan data ke per 4 * 3 n + 2 b 3 * 14, / 42 + 2 = 44 kemudian dikalikan seperempat sama dengan 11 dari data ke sebelah sini sama dengan 14 vital dapat di sini kuartil Q1 dan kuartil 3 nilainya kemudian kita menghitung nilai dari simpangan kuartil atau Q D = setengah X q3 min Q 1lagi nih = setengah X * 14 MIN 12 / = 2 setengah kalikan 2 nilainya = 1 ini adalah opsi jawaban yang B di kasih sampai bertemu di soal selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Materi yang satu ini mungkin cukup sulit dipahami oleh Sobat Zenius. Akan tetapi, elo nggak perlu khawatir. Pasalnya, dalam artikel ini gue mau ngebahas secara detail mengenai materi simpangan kuartil, mulai dari rumus dan cara mencari simpangan kuartil, jangkauan antar kuartil, langkah, pagar hingga contoh soalnya. Sebelumnya kita sudah pernah bahas tentang simpangan kuartil data tunggal dan data kelompok. Kita juga sudah pernah bahas desil dan persentil. Ternyata, masih ada, lho, pembahasan lanjutan dari materi ini. Ukuran penyebaran data perlu Sobat Zenius kuasai setelah mengetahui nilai dari masing-masing kuartil. Lantas, bagaimana cara menghitung simpangan kuartil? Nah, daripada Sobat Zenius semakin penasaran, yuk, simak artikel ini sampai selesai! Apa yang Dimaksud Jangkauan, Jangkauan Antar-kuartil, Simpangan Kuartil, Langkah, dan Pagar?Rumus Simpangan Kuartil, Jangkauan antar Kuartil, Jangkauan Kuartil, Langkah, dan PagarContoh SoalSoal Latihan Apa yang Dimaksud Jangkauan, Jangkauan Antar-kuartil, Simpangan Kuartil, Langkah, dan Pagar? Jangkauan biasa disebut juga dengan range atau rentang. Jangkauan dinyatakan dengan huruf J. Jangkauan adalah selisih dari data/datum terbesar dikurangi data/datum terkecil. Jangkauan antar kuartil dinamakan juga rentang antar-kuartil atau hamparan. Jangkauan antar kuartil dinyatakan dengan huruf H. Jangkauannya merupakan selisih antara kuartil atas/Q3 dan kuartil bawah/Q1. Simpangan kuartil dinamakan juga rentang semi antar-kuartil karena merupakan setengah dari hamparan atau jangkauan antar-kuartil. Nilai dari simpangan kuartil juga dapat digunakan untuk melihat jarak dari kuartil dua ke kuartil satu atau ke kuartil tiga, karena sebenarnya nilai simpangan kuartil adalah rata-rata jarak dari kuartil tersebut. Namun, nilai ini tidak selalu tepat, ya. Dalam statistika, pengertian langkah adalah satu setengah kali panjang satu hamparan. Sebenarnya, langkah digunakan untuk mencari nilai pagar dalam dan pagar luar. Pagar terbagi atas pagar dalam dan pagar luar. Pagar dalam adalah nilai satu langkah di bawah kuartil bawah. Pagar luar adalah nilai satu langkah di atas kuartil atas. Pagar digunakan untuk membatasi data. Biasanya, jika data normal, data hanya berada di dalam pagar dalam dan pagar luar. Nah, sebelum lanjut ke pembahasan mengenai rumus simpangan kuartil dan lainnya, Sobat Zenius bisa banget, lho, download aplikasi Zenius dulu! Lewat aplikasi, elo bakal menemukan ribuan contoh soal beserta pembahasan yang bisa elo pelajari dengan saksama, mulai dari contoh soal Matematika, Bahasa Indonesia, Bahasa Inggris, hingga mata pelajaran lainnya. Jadi, nggak usah lama-lama lagi, segera download banner di bawah ini untuk download aplikasinya! Download Aplikasi Zenius Tingkatin hasil belajar lewat kumpulan video materi dan ribuan contoh soal di Zenius. Maksimaln persiapanmu sekarang juga! Tidak banyak perbedaan pada masing-masing rumusnya, baik pada tunggal maupun data kelompok. Perbedaan terdapat pada nilai data terkecil dan data terbesar pada jangkauan, Sobat Zenius. Pada data tunggal, data terkecil dan data terbesarnya dapat dilihat secara jelas, sedangkan pada data kelompok data terkecil dan data terbesarnya diambil dari batas bawah kelas bawah dan batas atas kelas atas. Yuk, kita intip rumus-rumusnya! Rumus jangkauan Rumus jangkauan antar kuartil Rumus simpangan kuartil Rumus langkah Rumus pagar Pagar dalam = Pagar luar = Contoh Soal Nah, kini Sobat Zenius sudah tahu, kan, rumus-rumusnya. Sekarang, mari kita coba lihat contoh soal simpangan kuartil, jangkauan kuartil, jangkauan antar kuartil, pagar, dan langkah. Data tunggal Dari data 6, 6, 7, 9, 13, 16, 20, berapa nilai jangkauan, jangkauan antar-kuartil, simpangan kuartil, langkah, dan pagarnya? Jangkauan J = 20 – 6 Jangkauan antar kuartil Tentukan terlebih dahulu nilai Q1, Q2, dan Q3. Dari data tersebut, diperoleh Q1 = 6, Q2 = 9, dan Q3 = 16 H = 16 – 6 = 10 Simpangan kuartil Cara mencari simpangan kuartil data tunggal bisa Sobat Zenius aplikasikan menggunakan rumus yang sudah disebutkan sebelumnya. Dari rumus di atas, kita bisa mendapatkan angka berikut Qd = ½ H = ½ 10 = 5 Langkah L = 3/2 H = 3/2 10 = 15 Pagar dalam Pd = 6 – 15 = -9 Pagar luar Pl = 16 + 15 = 31 Data kelompok Dari tabel di atas, berapa nilai jangkauan, jangakauan antar-kuartil, simpangan kuartil, langkah, dan pagarnya? Jangkauan Pada data seperti tabel di atas, X min dan X max bukanlah 40 dan 69, tetapi 39,5 dan 69,5. J = 69,5 – 39,5 = 30 Jangkauan antar kuartil Tentukan terlebih dahulu nilai Q1, Q2, dan Q3. Dari data tersebut, diperoleh Q1 = 49,7, Q2 = 52,7, dan Q3 = 57 Setelah itu, Sobat Zenius bisa gunakan rumus jangkauan antar kuartil di bawah ini H = 57 – 49,7 = 7,3 Simpangan kuartil Pakai rumus di bawah ini untuk mencari simpangan kuartil data kelompok Qd = ½ H = ½ 7,3 = 3,65 Langkah L = 3/2 H = 3/2 7,3 = 10,95 Pagar Pagar dalam = Pd = 49,7 – 10,95 = 38,75 Pagar luar = Pl = 57 + 10,95 = 67,95 Sekarang giliran Sobat Zenius. Jawab soal di bawah ini dengan benar, ya! Soal Latihan Tentukan jangkauan, jangkauan antar-kuartil, simpangan kuartil, langkah, dan pagar dari data berikut 3, 3, 4, 4, 5, 6, 6, 7, 7, 7, 8! Jangkauan = … Jangkauan antar-kuartil = … Simpangan kuartil = … Langkah = … Pagar dalam = … Pagar luar = … Jika Sobat Zenius sudah berhasil menjawabnya, berarti elo sudah paham dengan materi kali ini. Namun, jangan berhenti sampai di sini, ya, guys. Perbanyak latihan soal! Itu dia penjelasan singkat dari gue mengenai rumus simpangan kuartil, jangkauan antar kuartil, pagar, hingga langkah. Pada dasarnya, materi Statistika yang satu ini tidak begitu sulit jika Sobat Zenius terus belajar dan berlatih dengan tekun. Beruntungnya Sobat Zenius bisa latihan dengan konsisten melalui ribuan contoh soal yang disediakan sama Zenius, nih! Selain contoh soal, di sana juga pembahasan yang bikin elo makin jago dalam ngerjain soal ujian nantinya. Kalau elo mau berlatih dari sekarang, gampang banget! Elo bisa segera langganan paket Zenius dengan klik gambar di bawah ini! Nah, sebelum itu, elo juga bisa mempelajari materi simpangan kuartil lebih dalam lagi melalui video pembahasan dari tutor Zenius. Buat aksesnya, elo tinggal klik banner di bawah ini, ya! Selamat belajar! Jangan lupa juga untuk mengikuti keseruan lainnya dari Zenius di YouTube! Sampai jumpa di materi lainnya! Baca Juga Artikel Lainnya Rumus Kuartil Rumus Desil dan Persentil Rumus Peluang Originally published September 18, 2021Updated by Maulana Adieb Kelas 12 SMAStatistika WajibJangkauanJangkauanStatistika WajibSTATISTIKAMatematikaRekomendasi video solusi lainnya0143Berikut ini adalah data produksi harian dalam ribuan di...0319Perhatikan tabel berikut. Nilai Ujian 3 4 5 6 7 8 9 Freku...0811Berat badan sekelompok siswa tersaji pada tabel berikut. ...0225Kecepatan dari 31 mobil pada suatu jalan tertentu adalah ...Teks videokata-kata kan kita mencari simpangan kuartil nya adalah wakil atas 3 orang bawah Q1 Q2 q3 adalah bilangan 3 per 4 n per 1 B karena n nya 11 maka didapatkan 12 x 3 per 4 x 12 titik a berada di bilangan ke 99 kelas 9 dari sini cara masukkan di sini 1541 adalah bilangan n + 15 na + 1 nya ada pada bilangan ke-3 yang ketiganya adalah sembilan masukkan ke mana kita masukkan kita punya ke simpangan kuartil ke-3 kita dapat 15 dikurang Q satunya 9 / 12 kurang 9 dapatkan 6 per 26 dibagi 2 adalah Nggak dapat 3 kali ini apa itu nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul 403 ERROR Request blocked. We can't connect to the server for this app or website at this time. There might be too much traffic or a configuration error. Try again later, or contact the app or website owner. If you provide content to customers through CloudFront, you can find steps to troubleshoot and help prevent this error by reviewing the CloudFront documentation. Generated by cloudfront CloudFront Request ID l_paWeImWFf0tC-gZUv92ez_pIC1W2Q0NtNTgkXOTqARzH2viep2LQ==

simpangan kuartil dari data 16 15 15